ReferentialGym.datasets package¶
Submodules¶
ReferentialGym.datasets.CLEVR_dataset module¶
-
ReferentialGym.datasets.CLEVR_dataset.
download_preprocess_dataset
(path)¶
-
ReferentialGym.datasets.CLEVR_dataset.
ToLongTensor
(data)¶
-
class
ReferentialGym.datasets.CLEVR_dataset.
Rescale
(output_size)¶ Bases:
object
-
class
ReferentialGym.datasets.CLEVR_dataset.
ToTensor
¶ Bases:
object
-
class
ReferentialGym.datasets.CLEVR_dataset.
CLEVRDataset
(root, train=True, transform=Compose( <ReferentialGym.datasets.CLEVR_dataset.Rescale object> <ReferentialGym.datasets.CLEVR_dataset.ToTensor object> ), download=False)¶ Bases:
torch.utils.data.dataset.Dataset
-
_check_exists
()¶
-
_download
()¶ Download and preprocess the Sort-of-CLEVR dataset if it doesn’t exist already.
-
getVocabSize
()¶
-
getAnswerVocabSize
()¶
-
getclass
(idx)¶
-
ReferentialGym.datasets.MSCOCO_dataset module¶
-
class
ReferentialGym.datasets.MSCOCO_dataset.
MSCOCODataset
(root, annFile, transform=None, transfer_learning=False, extract_features=None, data_suffix='TL.npy')¶ Bases:
torchvision.datasets.coco.CocoDetection
root (string): Root directory where images are downloaded to. annFile (string): Path to json annotation file. transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g,
transforms.ToTensor
transfer_learning (bool): Bool that defines whether we use the transfer learning version of the dataset. extract_features: Function that takes only one argument, i.e. the image tensor from
feature extraction is attempted.
-
make_tl_dataset
()¶
-
getclass
(idx)¶
-
getlatentvalue
(idx)¶
-
ReferentialGym.datasets.MineRL_dataset module¶
ReferentialGym.datasets.dSprites_dataset module¶
-
class
ReferentialGym.datasets.dSprites_dataset.
dSpritesDataset
(root='./', train=True, transform=None, split_strategy=None)¶ Bases:
torch.utils.data.dataset.Dataset
-
counter_test_threshold
= None¶ With regards to designing axises as primitives:
It implies that all the values on this latent axis are treated as test values when combined with a test value on any other latent axis.
N.B.: it is not possible to test for out-of-distribution values in that context… N.B.1: It is required that the number of primitive latent axis be one less than
the counter_test_thershold, at most.
A number of fillers along this primitive latent axis can then be specified in front of the FP pattern… Among the effective indices, those with an ordinal lower or equal to the number of filler allowed will be part of the training set.
-
getclass
(idx)¶
-
getlatentvalue
(idx)¶
-
getlatentclass
(idx)¶
-
gettestlatentmask
(idx)¶
-
ReferentialGym.datasets.dataset module¶
-
ReferentialGym.datasets.dataset.
shuffle
(experiences, orders=None)¶
-
class
ReferentialGym.datasets.dataset.
Dataset
(kwargs)¶ Bases:
torch.utils.data.dataset.Dataset
-
getNbrDistractors
(mode='train')¶
-
setNbrDistractors
(nbr_distractors, mode='train')¶
-
getNbrClasses
() → int¶
-
sample
(idx: int = None, from_class: List[int] = None, excepts: List[int] = None, target_only: bool = False) → Dict[str, object]¶ Sample an experience from the dataset. Along with relevant distractor experiences. If :param from_class: is not None, the sampled experiences will belong to the specified class(es). If :param excepts: is not None, this function will make sure to not sample from the specified list of exceptions. :param from_class: None, or List of keys (Strings or Integers) that corresponds to entries in self.classes. :param excepts: None, or List of indices (Integers) that are not considered for sampling. :param target_only: bool (default: False) defining whether to sample only the target or distractors too.
- Returns
- sample_d: Dict of:
”experiences”: Tensor of the sampled experiences.
”indices”: List[int] of the indices of the sampled experiences.
”exp_labels”: List[int] consisting of the indices of the label to which the experiences belong.
”exp_latents”: Tensor representatin the latent of the experience in one-hot-encoded vector form.
”exp_latents_values”: Tensor representatin the latent of the experience in value form.
some other keys provided by the dataset used…
-
ReferentialGym.datasets.dict_dataset_wrapper module¶
ReferentialGym.datasets.dual_labeled_dataset module¶
-
class
ReferentialGym.datasets.dual_labeled_dataset.
DualLabeledDataset
(kwargs)¶ Bases:
ReferentialGym.datasets.dataset.Dataset
-
set_mode
(newmode='train')¶
-
getNbrClasses
() → int¶
-
sample
(idx: int = None, from_class: List[int] = None, excepts: List[int] = None, target_only: bool = False) → Dict[str, object]¶ Sample an experience from the dataset. Along with relevant distractor experiences. If :param from_class: is not None, the sampled experiences will belong to the specified class(es). If :param excepts: is not None, this function will make sure to not sample from the specified list of exceptions. :param from_class: None, or List of keys (Strings or Integers) that corresponds to entries in self.classes. :param excepts: None, or List of indices (Integers) that are not considered for sampling. :param target_only: bool (default: False) defining whether to sample only the target or distractors too.
- Returns
- sample_d: Dict of:
”experiences”: Tensor of the sampled experiences.
”indices”: List[int] of the indices of the sampled experiences.
”exp_labels”: List[int] consisting of the indices of the label to which the experiences belong.
”exp_latents”: Tensor representatin the latent of the experience in one-hot-encoded vector form.
”exp_latents_values”: Tensor representatin the latent of the experience in value form.
some other keys provided by the dataset used…
-
ReferentialGym.datasets.extended_sort_of_CLEVR_dataset module¶
-
ReferentialGym.datasets.extended_sort_of_CLEVR_dataset.
generate_dataset
(root, dataset_size=10000, img_size=75, object_size=5, nb_objects=6, nb_nr_qs=5, nb_r_qs=7)¶ Inspired by: https://github.com/kimhc6028/relational-networks/blob/master/sort_of_clevr_generator.py
-
class
ReferentialGym.datasets.extended_sort_of_CLEVR_dataset.
XSortOfCLEVRDataset
(root, train=True, transform=None, generate=False, dataset_size=10000, test_size=2000, img_size=75, object_size=5, nb_objects=6, nb_nr_qs=5, nb_r_qs=7, test_id_analogy=False, test_id_analogy_threshold=3)¶ Bases:
torch.utils.data.dataset.Dataset
-
_check_exists
()¶
-
_generate
(root, dataset_size, img_size, object_size, nb_objects, nb_nr_qs, nb_r_qs)¶ Generate the Sort-of-CLEVR dataset if it doesn’t exist already.
-
getclass
(idx)¶
-
getlatentvalue
(idx)¶
-
getlatentclass
(idx)¶
-
getlatentonehot
(idx)¶
-
ReferentialGym.datasets.labeled_dataset module¶
-
class
ReferentialGym.datasets.labeled_dataset.
LabeledDataset
(kwargs)¶ Bases:
ReferentialGym.datasets.dataset.Dataset
-
set_mode
(newmode='train')¶
-
getNbrClasses
() → int¶
-
sample
(idx: int = None, from_class: List[int] = None, excepts: List[int] = None, target_only: bool = False) → Dict[str, object]¶ Sample an experience from the dataset. Along with relevant distractor experiences. If :param from_class: is not None, the sampled experiences will belong to the specified class(es). If :param excepts: is not None, this function will make sure to not sample from the specified list of exceptions. :param from_class: None, or List of keys (Strings or Integers) that corresponds to entries in self.classes. :param excepts: None, or List of indices (Integers) that are not considered for sampling. :param target_only: bool (default: False) defining whether to sample only the target or distractors too.
- Returns
- sample_d: Dict of:
”experiences”: Tensor of the sampled experiences.
”indices”: List[int] of the indices of the sampled experiences.
”exp_labels”: List[int] consisting of the indices of the label to which the experiences belong.
”exp_latents”: Tensor representatin the latent of the experience in one-hot-encoded vector form.
”exp_latents_values”: Tensor representatin the latent of the experience in value form.
some other keys provided by the dataset used…
-
ReferentialGym.datasets.sort_of_CLEVR_dataset module¶
-
ReferentialGym.datasets.sort_of_CLEVR_dataset.
generate_dataset
(root, dataset_size=10000, img_size=75, object_size=5, nb_objects=6)¶ Inspired by: https://github.com/kimhc6028/relational-networks/blob/master/sort_of_clevr_generator.py
-
class
ReferentialGym.datasets.sort_of_CLEVR_dataset.
SortOfCLEVRDataset
(root, train=True, transform=None, generate=False, dataset_size=10000, test_size=2000, img_size=75, object_size=5, nb_objects=6, test_id_analogy=False, test_id_analogy_threshold=3)¶ Bases:
torch.utils.data.dataset.Dataset
-
_check_exists
()¶
-
_generate
(root, dataset_size, img_size, object_size, nb_objects)¶ Generate the Sort-of-CLEVR dataset if it doesn’t exist already.
-
getclass
(idx)¶
-
getlatentvalue
(idx)¶
-
getlatentclass
(idx)¶
-
getlatentonehot
(idx)¶
-
ReferentialGym.datasets.utils module¶
-
ReferentialGym.datasets.utils.
collate_dict_wrapper
(batch)¶
-
class
ReferentialGym.datasets.utils.
ResizeNormalize
(size, use_cuda=False, normalize_rgb_values=False, toPIL=False, rgb_scaler=1.0)¶ Bases:
object
-
class
ReferentialGym.datasets.utils.
AddEgocentricInvariance
(marker_demisize=2)¶ Bases:
object
-
class
ReferentialGym.datasets.utils.
Rescale
(output_size)¶ Bases:
object
-
class
ReferentialGym.datasets.utils.
RescaleNormalize
(size, use_cuda=False, normalize_rgb_values=False)¶ Bases:
object